Reésistances mécaniques



Role critique des fissures
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Mais,
pour les fibres trés minces
on s’approche de la resistance théorique



Travail de Griffith sur les fibres de verre
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Dans tous les matériaux, les pores sont aussi un
parametre qui influence fortement la résistance
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Compression vs Flexion

A cause des fissures, la résistance a la flexion des bétons
est tres basse: quelque MPa (acier : 300)

- R, ~10 xR,

* en conséquence les bétons sont toujours utilisés en
compression.



Le béton armé est renforcé par des armatures en
acier:

poutre :

@ tension

La résistance a la traction du béton est admise
comme nulle: Rt =0

Par définition, le béton armé est fissuré sous les
charges de service.



Poutres avec capacite porteuse equivalente
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ACIER BETON ARME  précon- | Uctal®
TRAINT

poids 117 530 467 140




Sous l'effet d'une compression I'échantillon se
raccourcit longitudinalement et gonfle latéralement

Les fissures perpen-
diculaires aux charges
ne peuvent pas se
propager




Processus du rupture




Mode de rupture
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Le béton comme matériau composite

>0 » Les granulats et la pate de
ciment ont un comportement
40 I~ granulat linéaire élastique jusqu’a la
rupture
béto
30 * En revanche, le béton

démontre une déviation a la
linéarité avant rupture
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D’ou la complexité du mode de rupture:

La forme de I’échantillon a un impact significatif:

cylindres
cubes y
Y
N
~ hauteur _
RCyI 0’8 RCUb largeur
A
Pays UK, Suisse, etc USA, France, etc
Dimensions 22%% mm x 160 mm x Dmin moule >
mm X 320 9 X Dmax gran.
typiques 200 mm mm
) Distribution des contraintes
Avantages 2 faces moulées plus uniforme; frettage réduit

Résistance élevée

Désavantages ., par frettage; Besoin de rectifier

Etat de contrainte
non uniforme



Prismes

Ex: 40 mm x 40 mm x 160 mm
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Face de rupture

Possibilité de mesurer la résistance a la flexion et a la compression
sur le méme échantillon



Effet de I'age et E/C

Mais attention a l‘'ouvrabilité
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Loi de Feret, 1896
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Lol de Bolomey

R:K( ¢ —K’)
E+V

Pour v < ~2%
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Powers

oc
R=a

ac+e+v

o = fraction du ciment hydraté

Equivalent a:

R=a(1-P)

Ou P = porosité:

En fonction du nombres de paramétres inconnus (a et a), cette
formule n’est pas pratique a utiliser



Dans tous les matériaux, la porosité est aussi un
parametre qui influence fortement la résistance
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Importance de conservation

Pour le méme état
d‘hydratation les

échantillons secs

ont une résistance
plus élevée que

Tout le temps en chambre humide:
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Temperatures does not
affect mechanical properties and
“durability” in the same way
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Why?

« Lower final degree of hydration at higher temperatures?
* Different hydration products?

* Need strength as a function of hydration degree not time



compressive strength (MPa)
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CSH relative density

Due to lower microporosity in C-S-H "
— more capillary porosity at higher &
temperatures.  90d
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C-S-H formed at 90°C
Brighter = more dense;
less microporosity

C-S-H formed at 20°C
Darker = less dense;
more microporosity



Taille des granulats

2 effets antagonistes:
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Résumeé des parametres qui influencent la
resistance a la compression



Pourquoi mesurer la résistance a la traction



Résistance a la traction
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Meéthodes, indirectes:
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2 tension | compression
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Flexion, 4pt
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d=L/3 etc, qui sont
chargées en flexion

fa = PL/bd? fn > 1t



Tension vs compression

Relation non linéaire, fonction de la résistance
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High strength concrete more brittle



Normal

Strength

Fracture du béton
a résistance normale

a haute résistance

Modified from ACBM Movie



Le béton comme matériau composite
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» Les granulats et la pate de
ciment sont élastiques
jusqu’a la rupture

 En revanche, le béton
démontre une déviation de
la linéarité avant rupture



Calcul du module pour les matéeriaux composites
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 Le module d’Young est une propriété “composite”
Les Granulats constituent ~70% du volume - ils dominent le
Module d’Young

 Idem pour les propriétés thermiques

 Les Resistances mécaniques ne sont pas des propriétés
composites — la pate joue le role du “maillon faible”. Les granulats
ont trés peu d’impact.



